尊龙人生

大象上船做上记号相同重量的石头换取大象大象下船**4.曹冲称象绿色圃中学资源网妈妈拿来一杆(),去()苹果。

  • 博客访问: 424708
  • 博文数量: 43
  • 用 户 组: 普通用户
  • 注册时间:2019-07-18 09:18:12
  • 认证徽章:
个人简介

深入到蚌埠新港、北师大、冠宜箱包、建华管桩、小微企业创业基地、御湖世家、欧尚超市、冠旗艺术玻璃有限司、宏业纺织等实地了解项目落地、生产等情况,积极推动项目建设。

文章分类

全部博文(197)

文章存档

2015年(58)

2014年(432)

2013年(578)

2012年(269)

订阅

分类: 企业雅虎

d88尊龙,三、工作要求各工程指挥部和铁路公司要按照“五定、三统一、一查处”的检查制度认真开展“十严禁”检查处理工作。PAGE考点42恒过定点的直线要点阐述要点阐述含参的直线方程,大都可以改写成的形式,由直线的点斜式方程可知,直线必定过点,利用直线恒过定点可以妙解数学问题.典型例题典型例题【例】若直线l∶y=kx-eq\r(3)与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角α的取值范围是________.【答案】30°<α<90°【易错易混】直线从CA运动到CB,是直线的斜率k>eq\f(\r(3),3),对应的倾斜角为(30°,90°),不包括90°.小试牛刀小试牛刀1.若,直线y+2=k(x–1)恒过一个定点,则这个定点的坐标为()A.(1,–2)B.(–1,2)C.(–2,1)D.(2,1)【答案】A【解析】y+2=k(x–1)是直线的点斜式方程,它经过定点为(1,–2).故选A.【规律方法】解含有参数的直线恒过定点的问题.方法1:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.方法2:分项整理,含参数的并为一项,不含参数的并为一项,整理成等号右边为0的形式,然后含参数的项和不含参数的项分别为零,解此方程组得到的解即为已知直线恒过的定点.2.若,则直线必经过的一个定点是(  )A.(1,1)B.(–1,1)C.(1,–1)D.(–1,–1)【答案】C【解析】由,得,故可化为,所以必经过的一个定点是(1,–1).3.三条直线:,,构成三角形,则的取值范围是(  )A.B.C.D.,【答案】A【秒杀技】若a=1,或a=–1则有两条直线平行,构不成三角形,选出答案A.4.直线y=mx+2m【答案】(-2,1)【解析】把直线方程化为点斜式y-1=m(x+2).显然当x=-2时y=1,即直线恒过定点(-2,1).5.直线的系数,满足,则直线必过定点________.【答案】(6,–8)【解析】∵,∴,∴.∴,∴,解方程组得∴定点为(6,–8).考题速递考题速递1.直线,当变化时,所有直线都通过定点(  )A.(0,0)B.(0,1)C.(3,1)D.(2,1)【答案】C【解析】直线方程整理为k(x–3)–(y–1)=0,过定点(3,1).2.不论怎么变化,直线恒过定点(  )A.(1,2)B.(–1,–2)C.(2,1)D.(–2,–1)【答案】B3.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|ABA.eq\f(\r(89),5)B.eq\f(17,5)C.eq\f(13,5)D.eq\f(11,5)【答案】C【解析】直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0,过定点Beq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(2,5))),由两点间的距离公式,得|AB|=eq\f(13,5).4.已知直线l:5ax-5y-a+3=0.(1)求证:不论a为何值,直线l总经过第一象限;(2)为使直线不经过第二象限,求a的取值范围.【解析】(1)将直线l的方程整理为y-eq\f(3,5)=a(x-eq\f(1,5)),∴l的斜率为a,且过定点A(eq\f(1,5),eq\f(3,5)).而点A(eq\f(1,5),eq\f(3,5))在第一象限,故l过第一象限.∴不论a为何值,直线l总经过第一象限.(2)直线OA的斜率为k=eq\f(\f(3,5)-0,\f(1,5)-0)=3.∵l不经过第二象限,∴a≥3.数学文化数学文化蒲丰试验一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了.蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142.蒲丰说:“这个数是π的近似值.每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确.”这就是著名的“蒲丰试验”.利来娱乐国际PAGE第3课时 三角形中的几何计算课后篇巩固探究A组1.在△ABC中,AB=2,BC=5,△ABC的面积为4,则cos∠ABC等于(  )                ±C.-D.±解析由S=AB·BC·sin∠ABC,得4=×2×5sin∠ABC,解得sin∠ABC=,从而cos∠ABC=±.答案B2.某市在“旧城改造”工程中计划在如图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮的价格为a元/m2,则购买这种草皮需要(  )元元解析由已知可求得草皮的面积为S=×20×30sin150°=150(m2),则购买草皮的费用为150a元答案C3.在△ABC中,a,b,c分别为角A,B,C的对边,若2b=a+c,B=30°,△ABC的面积为,则b等于(  )+++3解析由acsin30°=,得ac=6.由余弦定理,得b2=a2+c2-2accos30°=(a+c)2-2ac-3ac=4b2-12-63答案A4.在△ABC中,若AC=3BC,C=π6,S△ABC=3sin2A,则S△ABC=(解析因为AB2=BC2+3BC2-2×BC×3BC×32=BC2,所以A=C=π6,所以S△ABC=3sin2A=答案A5.若△ABC的周长等于20,面积是103,B=60°,则边AC的长是(  )解析在△ABC中,设A,B,C的对边分别为a,b,c,已知B=60°,由题意,得cos60°=a2+c答案C6.已知△ABC的三边分别为a,b,c,且面积S=a2+b2解析在△ABC中,S△ABC=a2而S△ABC=absinC,∴a2+b由余弦定理,得c2=a2+b2-2abcosC,∴cosC=sinC,∴C=45°.答案45°7.已知三角形的面积为,其外接圆面积为π,则这个三角形的三边之积等于     .解析设三角形的外接圆半径为R,则由πR2=π,得R=1.由S=absinC=abc4R=abc答案18.在△ABC中,角A,B,C所对的边分别为a,b,c,求证:ab-b证明由余弦定理的推论得cosB=a2cosA=b2右边=ca=2a2故原式得证.9.如图,在△ABC中,BC=5,AC=4,cos∠CAD=3132,且AD=BD,求△ABC的面积解设CD=x,则AD=BD=5-x.在△CAD中,由余弦定理,得cos∠CAD=42+(5∴CD=1,AD=BD=4.在△CAD中,由正弦定理,得ADsin则sinC=ADCD·1-∴S△ABC=AC·BC·sinC=×4×5×387=154710.导学号04994016若△ABC的三边长分别为a,b,c,面积为S,且S=c2-(a-b)2,a+b=2,求面积S的最大值.解S=c2-(a-b)2=c2-a2-b2+2ab=2ab-(a2+b2-c2).由余弦定理,得a2+b2-c2=2abcosC,∴c2-(a-b)2=2ab(1-cosC),即S=2ab(1-cosC).∵S=absinC,∴sinC=4(1-cosC).又sin2C+cos2C=1,∴17cos2C-32cosC+解得cosC=1517或cosC=1(舍去)∴sinC=817∴S=absinC=417a(2-a)=-417(a-1)2+∵a+b=2,∴0a2,∴当a=1,b=1时,Smax=417B组1.在钝角三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=5314,则△ABC的面积等于(解析在钝角三角形ABC中,∵a=7,c=5,sinC=5314,∴AC,C为锐角,且cosC=1-sin2C=1114.由c2=a2+b2-2abcosC,得b2-11b+24=0,解得b=3或b=8.当b=8时,角B是钝角,cosB=a2+c2-b22ac=49+25-642答案C2.设△ABC的内角A,B,C所对的边分别为a,b,c,且3acosC=4csinA,若△ABC的面积S=10,b=4,则a的值为(  )解析由3acosC=4csinA,得asinA=4c3cosC.又由正弦定理asinA=csinC,得csinC=4c3cosC,∴tanC=,∴答案B3.在△ABC中,ab=60,S△ABC=153,△ABC的外接圆半径为3,则边c的长为    .解析∵S△AB《高速铁路桥涵工程施工质量验收标准》(TB10752-2010)条款规定,桩身混凝土应匀质、完整。

在此,首先特别感谢司领导和同事们给予我的大力支持、关心和帮助,使我能够很快地适应了司的管理与运作程序,努力做好本职工作。最大化的满足了被侵权者的诉求。w66利来国际对不少家长来说,这是升学的一条途径,我看有市场,就辞职专门做这个。(问):股市崩溃意味着什么?*我们知道:股市崩溃了。

阅读(145) | 评论(161) | 转发(450) |

上一篇:尊龙人生就是搏

下一篇:尊龙d88

给主人留下些什么吧!~~

许传鑫2019-07-18

黄国玲……………………………………………………283.3.3学校公共浴室节水、节能研究……………………………………313.4游泳馆用水……………………………………………………………….323.4.1分析实验数据……………………………………………………….323.4.2游泳馆节水…………………………….:………………………….343.5教学楼用水…………………………….:…………………………………353.5.1教学楼调研方法……………………………………………………353.5.2教学楼人均用水定额、单位面积用水量…………………………35目录3.5.2教学楼节水措施……………………………………………………383.6校医院用水量调查分析………………………………………………….393.6.1校医院用水量监测结果……………………………………_……393.6.2校医院用水量情况小结……………………………………………4l3.7图书馆用水量调查分析…………………………………………………423.7.1图书馆用水人数统计………………………………………………423.7.2图书馆用水规律分析………………………………………………433.7.3

他们提高关税,阻止外

张直2019-07-18 09:18:12

6、工作到位。

黄义达2019-07-18 09:18:12

从这些可以看出,作中对于表达的字层面的要求以及退缩,取而代之的是对其思想和内涵以及积淀的考查,而要培养学生的这些能力或者说是素养,机械的、完成任务式的堂教学是实现不了的。,默读要求小娃撑小艇,娃:男孩儿或女孩儿撑:撑船,用桨使船前进艇:船句意:一个小孩划着小船第一句偷采白莲回。。比较裸子植物与被子植物的区别zxxkw。

耶律宗真2019-07-18 09:18:12

真正的自信是无论别人说什么,怎么打击你,你都不为所动,你都保持自己一贯的原则和自我,然而,这种自主必须是理性和有效的,你的优秀,你的成绩,必须是客观和实际的。,阿里巴巴有权回收同时符合以下条件的不活跃账户:(1)未绑定通过实名认证的支付宝账户;(2)连续6个月未使用用户的邮箱、手机或阿里巴巴认可的其他方式和密码登录过阿里巴巴中国站,也未登录过其他任意阿里平台;(3)不存在未到期的有效业务,有效业务包括但不限于尚未完结的交易订单、用户开通或订购的增值服务等。。 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即。

李金彩2019-07-18 09:18:12

而此时临近大选的波罗申科支持率正在下降,随后摩擦就发生了。, 最大值与最小值学习目标重点难点1.知道函数的最大值与最小值的概念.2.能够区分函数的极值与最值.3.会用导数求闭区间上不超过三次的多项式函数的最大值、最小值.重点:函数在闭区间上的最值的求解.难点:与函数最值有关的参数问题.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有______________,则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值________.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有____________,则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值________.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的________;(2)将第(1)步中求得的________与______,______比较,得到f(x)在区间[a,b]上的最大值与最小值.预习交流1做一做:函数y=x-sinx,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))的最大值是______.预习交流2做一做:函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为______.预习交流3(1)函数的极值与最值有何区别与联系?(2)如果函数f(x)在开区间(a,b)上的图象是连续不断的曲线,那么它在(a,b)上是否一定有最值?若f(x)在闭区间[a,b]上的图象不连续,那么它在[a,b]上是否一定有最值?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)f(x)≤f(x0) 惟一 (2)f(x)≥f(x0) 惟一2.(1)极值 (2)极值 f(a) f(b)预习交流1:提示:∵y′=1-cosx≥0,∴y=x-sinx在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))上是增函数,∴ymax=π.预习交流2:提示:∵f′(x)=3x2-3a=3(x2-af(x)在(0,1)内有最小值,∴方程x2-a=0有一根在(0,1)内,即x=eq\r(a)在(0,1)内,∴0<eq\r(a)<1,0<a<1.预习交流3:提示:(1)①函数的极值是表示函数在某一点附近的变化情况,是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义区间上的情况,是对整个区间上的函数值的比较,具有绝对性.②函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性;而极大值和极小值可能多于一个,也可能没有,例如:常函数就没有极大值,也没有极小值.③极值只能在函数的定义域内部取得,而最值可以在区间的端点取得.有极值的不一定有最值,有最值的不一定有极值,极值有可能成为最值,最值只要不在端点处则一定是极值.(2)一般地,若函数f(x)的图象是一条连续不断的曲线,那么f(x)在闭区间[a,b]上必有最大值和最小值.这里给定的区间必须是闭区间,如果是开区间,那么尽管函数是连续函数,那么它也不一定有最大值和最小值.一、求函数在闭区间上的最值求下列函数的最值:(1)f(x)=-x3+3x,x∈[-eq\r(3),eq\r(3)];(2)f(x)=sin2x-x,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),\f(π,2))).思路分析:按照求函数最值的方法与步骤,通过列表进行计算与求解.1.函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值分别是__________.2.求函数y=5-36x+3x2+4x3在区间[-2,2]上的最大值与最小值.1.求函数在闭区间上的最值时,一般是先找出该区间上使导数为零的点,无需判断出是极大值还是极小值,只需将这些点对应的函数值与端点处的函数值比较,其中最大的是最大值,最小的是最小值.2.求函数在闭区间上的最值时,需要对各个极值与端点函数值进行比较,有时需要作差、作商,有时还要善于估算,甚至有时需要进行分类讨论.二、与最值有关的参数问题的求解已知当a>0时,函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.思路分析:先求出函数f(x)在[-1,2]上的极值点,然后与两个端点的函数值进行比较,建立关于a,b的方程组,从而求出a,b的值.若函数f(x)=-x3+3x2+9x+a在区间[-2,2]上的最大值为20,求它在该区间上的最小值.。三、工作要求各工程指挥部和铁路公司要按照“五定、三统一、一查处”的检查制度认真开展“十严禁”检查处理工作。。

李损之2019-07-18 09:18:12

训练第一天,四位小队长就早早集结,超高的早起要求虽然让学员们措手不及,但让大家更懂得了“自律”的含义。,网友纷纷在下面留言表示“真是不幸的名字”“起这种名字,一看就不靠谱”“干脆给他改名叫日本瑜吧”,一片莫名的嘲讽之声。。有时候连老师都念错,让他成为全班的笑柄。。

评论热议
请登录后评论。

登录 注册

利来国际老牌w66 w66利来娱乐公司 利来最给利的网站 利来国际老牌w66 利来国际老牌w66
利来国际w66平台 利来国际旗舰厅app 利来国际老牌博彩手机 利来国际网站 利来娱乐老牌
利来娱乐国际 利来国际w66娱乐平台 利来国际娱乐平台 w66利来娱乐 利来娱乐国际
利来娱乐网 w66利来娱乐 利来国际AG旗舰厅 利来国际公司 w66利来国际
台中市| 贡嘎县| 揭西县| 克山县| 土默特右旗| 柳州市| 汶上县| 罗山县| 舞钢市| 溧水县| 铜川市| 宜春市| 宁德市| 射洪县| 宜州市| 囊谦县| 佳木斯市| 富锦市| 藁城市| 西青区| 阿拉善右旗| 新营市| 扶余县| 容城县| 隆尧县| 承德县| 松滋市| 环江| 西平县| 嘉峪关市| 瑞丽市| 海宁市| 丰宁| 黄大仙区| 襄城县| 惠水县| 基隆市| 鹿邑县| 武冈市| 延安市| 团风县| http://m.73736999.cn http://m.27731726.cn http://m.87133478.cn http://m.88133061.cn http://m.71861137.cn http://m.92318406.cn